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1. Introduction

The ratio of strange to light-quark vacuum condensates, Rsu = <s̄s>
<q̄q>

, is a key QCD param-

eter measuring flavour SU(3) symmetry breaking in the vacuum [1]. It is also an important

quantity that enters in many QCD sum rule applications, e.g. baryon mass determinations,

the Goldberger-Treiman discrepancy in SU(3) × SU(3), etc. [2]–[3]. In addition, this ratio

is related to two low energy constants of chiral perturbation theory [4], which in turn de-

termine the next-to-leading order corrections to the Gell-Mann, Oakes, Renner (GMOR)

relation. As a result of this importance, many attempts have been made in the past to

determine the numerical value of this ratio, as well as to improve its accuracy [2], [5]–[6].

Improvements in the QCD sector have been possible due to state of the art results for the

relevant two-point functions at higher order in perturbation theory, as well as to a better

understanding of how to deal with logarithmic quark-mass singularities. Better accuracy in

the strange quark mass and in ΛQCD is still required. A serious limiting factor, though, has

always been the lack of direct experimental information on the hadronic spectral functions

entering the QCD sum rules used to extract Rsu. While data on hadronic τ -lepton decays

has allowed for a simultaneous determination of the (light) vector and axial-vector spectral

functions, this is not yet possible for the scalar and pseudoscalar counterparts which deter-

mine Rsu. Even if all scalar and pseudoscalar resonances were to be firmly established, a

reconstruction of the hadronic spectral function would remain model-dependent to a large

extent. In fact, inelasticity and non-resonant background are hard to model correctly.

In this paper we argue that it is valid to use QCD sum rules to determine the scalar

and pseudoscalar two-point functions at zero momentum, which in turn determine the

ratio Rsu. These sum rules actually fix the difference between the true ψ(5)(0) and its

perturbative piece. In an attempt to reduce systematic uncertainties from the hadronic
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sector we introduce a new set of Finite Energy QCD sum rules (FESR) to estimate the

scalar and pseudoscalar two-point functions at zero momentum . These FESR involve

as integration kernel a second degree polynomial with two free parameters. These are

determined by requiring the vanishing of the spectral function at the position of the first

two resonances in each channel. As a result of this, the numerical importance of the

hadronic contribution to the FESR is considerably reduced. In fact, it becomes roughly an

order of magnitude smaller than the QCD counterpart. In addition, the latter turns out

to be dominated by the purely perturbative QCD (PQCD) piece; the higher order in ms

terms as well as the condensates add up to a negligible contribution as a result of partial

cancellations. The results show a very good stability against changes in the upper limit

of integration over a wide range of energies. Sensitivity to ΛQCD, and most particularly

to ms remains somewhat high, and becomes the limiting factor in the accuracy that can

be achieved for Rsu. This is roughly at the 20 % level. Nevertheless, with the hadronic

uncertainties well under control in this approach, future reduction of the errors in ms

and ΛQCD will allow for a more accurate determination of Rsu, almost free from hadronic

systematic uncertainties.

The high sensitivity of the results for ψ(5)(0) and Rsu to the strange quark mass are

used to derive an upper bound for this quantity from the requirement Rsu ≥ 0. Finally, the

unphysical low energy constant of Chiral Perturbation Theory related to Rsu is estimated.

2. Low energy theorem

We introduce the correlator of vector and axial-vector divergences

ψ(5)(q
2)|ji = i

∫
d4x eiqx < |T (∂µJµ(x)|ji , ∂

νJ†
ν(0)|ji )| > , (2.1)

where ∂µJµ(x)|ji = (mj ∓ mi) : q̄j(x) i (γ5) qi(x) : is the divergence of the vector (axial-

vector) current. At zero momentum, a Ward identity relates the subtraction constants

ψ(5)(0)|
j
i to the quark condensates [1], [7]–[8], viz.

ψ(5)(0)|
j
i = −(mj ∓mi)

〈
[ψjψj ∓ ψiψi]

〉
. (2.2)

In the determination of < s̄s > we shall be using i = u, d and j = s, as well as

the approximations ms ≫ mu,d, < ūu >≃< d̄d >. From the time-ordered product in

eq. (2.1) and using Wick’s theorem one would get normal-ordered operators in the low-

energy theorem eq. (2.2). However there are mass-singular quartic terms in perturbative

theory as well as tadpole contributions. In fact, to lowest order in the MS scheme

ψMS
(5) (0) = −

3

4π2
m4

s

(
1 + ln

µ2

m2
s

)
, (2.3)

〈0 |mss̄(0)s(0)| 0〉
MS =

3

4π2
m4

s

(
1 + ln

µ2

m2
s

)
. (2.4)

If the quark condensates in eq. (2.2) would be considered as minimally subtracted

instead of normal-ordered, then the perturbative quartic mass corrections would cancel [8]–

[11], the low-energy theorem would make sense and the simple functional form of eq. (2.2)

would follow. All of this still holds after introducing gluonic corrections [8].
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Figure 1: Integration contour in the complex s-plane.

If the condensate is to be calculated from QCD sum rules, there is a subtle point

concerning the renormalization of the operators in eq. (2.1), first pointed out clearly in [6],

which we discuss in the following. In QCD the correlator ψ(5)(q
2) is of the general form

ψ(5)(q
2) = A+Bq2 + ψ̃(5)(q

2) , (2.5)

where A and B are constants related to external renormalization, and ψ̃(5)(q
2) is the two-

point function without the first order polynomial, which has been factored out. In the MS

scheme of QCD perturbation theory, for instance, and at lowest non-trivial order in the

strong coupling constant, the correlator at large −q2 is given by

ψMS
(5) (q2) =

−q2→∞
m2

sq
2 1

16π2

{
12 − 6L+

αs(q
2)

π

[
131

2
− 34L+ 6L2 − 24ζ(3)

]

+ O(α2
s(q

2))

}
−m4

s

12

16π2
(1 − L) +O(αsm

4
s,m

6
s) , (2.6)

where L = ln −q2

µ2 , and ζ(z) is the Riemann zeta-function. The correlator at zero momentum

can be formally written in terms of a QCD Finite Energy Sum Rule (FESR), which follows

from Cauchy’s theorem in the complex energy (squared) plane (see figure 1), i.e.

ψ(5)(0) =

∫ s0

sth

ds

s

1

π
Im ψ(5)(s) +

1

2πi

∮

C(|s0|)

ds

s
ψ(5)(s)

≃

∫ s0

sth

ds

s

1

π
Im ψ.

(5)(s) +
1

2πi

∮

C(|s0|)

ds

s
ψQCD

(5) (s) , (2.7)

where sth is the hadronic threshold (e.g. M2
K), and the contour integral is performed over a

large circle where the exact ψ(5)(s) can be safely replaced by its QCD counterpart ψQCD
(5) (s).

To leading order in chiral-symmetry breaking, i.e. to order O(m2
s), the constant A in

eq. (2.5) vanishes, and the linear term in q2 does not contribute to the integral in eq. (2.7).

This means that in this case ψ(5)(0), as well as the non-normal ordered condensate in

the low energy theorem, eq. (2.2), can be determined unambiguously from a FESR. At the
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next order, i.e. keeping terms of order O (m4
s), and using eq. (2.5) in eq. (2.7) leads to

ψ5(0) =

∫ s0

sth

ds

s

1

π
Imψ5(s) +

1

2πi

∮

C(|s0|)

ds

s
ψ̃MS

5 (s) (2.8)

where ψ̃QCD
5 (s) is defined in eq. (2.5) . The sum rule then relates the non-normal ordered

condensate to an integral over the hadronic spectral function and a contour integral over the

non-polynomial part of the QCD correlator ψ̃QCD
5 (s). Whereas the product of quark mass

times normal-ordered condensate is a renormalization invariant quantity, this is, however,

no longer true for the non-normal-ordered condensate. Only at leading order in m2
s is the

quark condensate directly related to a physical quantity. In full QCD, however, its value,

just like the QCD coupling and the quark masses, depends on the renormalization scale

and on the renormalization scheme employed.

Numerically, the quartic mass terms are potentially relevant only for the determination

of the strange quark mass. In fact, we find a-posteriori that the corrections of order m4
s

to ψ(5)(0) are at the level of only (1 − 2)% of the leading terms. Hence, the subtleties of

renormalization discussed above are largely academic.

3. The ratio Rsu

One possible way of determining the ratio Rsu is to use the auxiliary ratio

RAA ≡
ψ5(0)|

s
u

ψ5(0)|du
=

1

2

ms +mu

mu +md

(1 +
< s̄s >

< ūu >
) , (3.1)

where < ūu >≃< d̄d > will be assumed in the sequel. In fact, if the subtraction constants

and the quark masses are determined independently, e.g. from QCD sum rules, then Rsu

follows. Using current values of the quark masses [12] gives

Rsu ≡
< s̄s >

< ūu >
≃ 0.15 RAA − 1 . (3.2)

Since RAA is expected from current algebra to be of order O(10), this method would

result in a very large uncertainty in Rsu unless the subtraction constants were to be deter-

mined with extreme accuracy. Due to this, an alternative procedure, first proposed in [13],

consists in using instead the ratio

RV A ≡
ψ(0)su
ψ5(0)su

, (3.3)

which leads to

Rsu ≡
〈ss〉

〈uu〉
≃

1 +RV A

1 −RV A
. (3.4)

This method was used in [5] to obtain both subtraction constants from Laplace trans-

form QCD sum rules to four loops with the results

ψ5(0)|
s
u = (3.35 ± 0.25) × 10−3 GeV4 , (3.5)

ψ(0)|su = −(1.06 ± 0.21) × 10−3 GeV4 , (3.6)

Rsu ≡
< s̄s >

< ūu >
= 0.5 ± 0.1 , (3.7)
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and the following value of the invariant strange-quark mass

m̂s = 140 ± 10 MeV , (3.8)

for ΛQCD in the range ΛQCD ≃ 300 − 350 MeV. Not included in the above errors are the

uncertainties due to hadronic spectral function modelling, which could be large [14].

The connection between the quark condensate ratio Rsu determined from QCD sum

rules, e.g. through eq. (3.4), and the one entering chiral perturbation theory has been

discussed in [6]. In the framework of the latter, Rsu depends on an unphysical low-energy

constant Hr
2 through the relation

Rsu ≡
< s̄s >

< q̄q >
= 1 + 3µπ − 2µK − µη +

8

f2
π

(M2
K −M2

π)(2Lr
8 +Hr

2) , (3.9)

where < q̄q > is the average of the up- and down quark condensates, Lr
8 is a (physical)

low-energy constant in the chiral Lagrangian to next-to-leading order [15], and

µP =
M2

P

32π2f2
π

ln
M2

P

ν2
χ

(3.10)

with νχ the chiral renormalization scale. The constant Lr
8 at a scale equal to the rho-meson

mass has been estimated in chiral perturbation theory to next-to-leading order with the

result [6]

Lr
8(νχ = Mρ) = (0.88 ± 0.24) × 10−3 , (3.11)

while a determination at order O(p6) gives [16] Lr
8(νχ = Mρ) = (0.62 ± 0.20) × 10−3. The

unphysical low energy constant Hr
2 has been estimated in [6] as

Hr
2(νχ = Mρ) = −(3.4 ± 1.5) × 10−3 . (3.12)

Both low energy constants determine the size of the next-to-leading order chiral correc-

tions to the GMOR relations in SU(2)×SU(2) and SU(3)×SU(3), δπ and δK respectively,

defined as

(mu +md) < ūu+ d̄d > = −2f2
πM

2
π(1 − δπ) , (3.13)

ms < s̄s >

(
1 +

1

Rsu

)
= −2f2

KM
2
K(1 − δK) , (3.14)

where the physical values of the pseudoscalar decay constants are fπ = 92.4 ± 0.26 MeV,

and fK/fπ = 1.22 ± 0.01 [12]. To next-to-leading order one has [15]

δπ = 4
M2

π

f2
π

(2Lr
8 −Hr

2) and δK =
M2

K

M2
π

δπ . (3.15)

4. Finite energy QCD sum rules

We consider first the pseudoscalar correlator, ψ5(q
2), which exhibits a pole and a cut in

the complex energy (squared) plane. Cuachy’s theorem reads

ψ5(0) = 2f2
KM

2
K +

1

2πi

∮

C

ds

s
ψ5(s) , (4.1)
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where the closed contour C comprises the cut across the real axis and the circle of radius

|s0| (see figure 1). Introducing an integration kernel of the form

∆5(s) = 1 − a05 s− a15 s
2 , (4.2)

where a05, and a15 are free parameters, the two-point function at zero momentum becomes

ψ5(0) = 2f2
KM

2
K ∆5(M

2
K) +

1

π

∫ s0

sth

ds

s
∆5(s) Im ψ5(s)|RES

+
1

2πi

∮

C(|s0|)

ds

s
∆5(s) ψ(5)(s)|QCD . (4.3)

The free parameters a05, and a15 will be chosen in such a way that ∆5(M
2
1 ) =

∆5(M
2
2 ) = 0, where M1,2 are the masses of the two radial excitations of the kaon. This

procedure will reduce considerably the numerical importance of the resonance contribution

to ψ5(0), thus reducing the systematic uncertainties that plague the hadronic sector. For

the scalar two-point function at zero momentum one finds

ψ(0) =
1

π

∫ s0

sth

ds

s
∆(s) Im ψ(s)|RES +

1

2πi

∮

C(|s0|)

ds

s
∆(s) ψ(s)|QCD , (4.4)

where ∆(s) is a second degree polynomial as in eq. (4.2), and it will also be constrained to

vanish at the position of the two resonances in the scalar channel.

The two-point function ψ(5)(q
2) has been known in PQCD up to four-loops for quite

some time [17]. Recently, the PQCD second derivative of ψ(5)(q
2) to five loops has been

computed in [18]. Integrating this result twice gives the five-loop expression for the two-

point function up to polynomial terms . The latter do not contribute to the integrals

around the circle in the s-plane. The remaining terms in the QCD expression for ψ(5)(q
2),

i.e. the higher orders in ms and the quark and vacuum condensate contributions, may be

found in [11]. To compute the QCD contribution we define

δ(5)(s0)|QCD ≡
1

2πi

∮

C(|s0|)

ds

s
∆(5)(s) ψ(5)(s)|QCD , (4.5)

where ψ5(s)|QCD = ψ(s)|QCD for the purely gluonic piece, but δ5(s0) 6= δ(s0) on account

of ∆5(s) 6= ∆(s) (a05 6= a0 and a15 6= a1). Using the expression for ψ(5)(q
2) to five-loop

order in eq. (4.5) and performing the integration around the circle in the complex s-plane

– 6 –
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we find the following purely gluonic results

δ(5)|1LOOP = −
1

16π2
m2

s(s0)
[
6 s0 − 3a0(5)s

2
0 − 2a1(5)s

3
0

]
, (4.6)

δ(5)|2LOOP = −
1

16π2
m2

s(s0)
αs(s0)

π

[
46s0 − 20a0(5)s

2
0 −

38

3
a1(5)s

3
0

]
, (4.7)

δ(5)|3LOOP = −
1

16π2
m2

s(s0)

[
αs(s0)

π

]2{
s0

[
9631

24
− 105ζ(3)

+ 190 − 51

(
π2

6
− 1

)]
− a0(5)

s20
2

[
9631

24
− 105ζ(3) + 95

− 51

(
π2

6
−

1

4

)]
−a1(5)

s30
3

[
9631

24
−105ζ(3)+

190

3
−51

(
π2

6
−

1

9

)]}
, (4.8)

δ(5)|4LOOP = −
1

16π2
m2

s(s0)

[
αs(s0)

π

]3{
s0

[
A1 + 12

(
4781

18
−

475

8
ζ(3)

)

−

(
1374 +

663

2

)(
π2

6
− 1

)]
− a0(5)

s20
2

[
A1 + 6

(
4781

18
−

475

8

× ζ(3)

)
−

(
1374 +

663

4

)(
π2

6
−

1

4

)]
− a1(5)

s30
3

[
A1 + 4

(
4781

18

−
475

8
ζ(3)

)
−

(
1374 +

221

2

)(
π2

6
−

1

9

)]}
, (4.9)

δ(5)|5LOOP = −
1

16π2
m2

s(s0)

[
αs(s0)

π

]4{
s0

[
H1 − 2H2 − (6H3 − 24H4)

×

(
π2

6
− 1

)
+ 120H5

(
π4

120
−
π2

6
+ 1

)]
− a0(5)

s20
2

[
H1 −H2

− (6H3 − 12H4)

(
π2

6
−

1

4

)
+ 120H5

(
π4

120
−
π2

24
+

1

16

)]

− a1(5)
s30
3

[
H1 −

2

3
H2 − (6H3 − 8H4)

(
π2

6
−

1

9

)
+ 120H5

×

(
π4

120
−
π2

54
+

1

81

)]}
(4.10)

where for three quark flavours A1 = 2795.0778, H1 = 33532.30, H2 = −15230.645,

H3 = 3962.4549, H4 = −534.05208, and H5 = 24.171875. The constants Hi enter in

the expression of the two-point functions to five loops as

ψ(5)(q
2)|5LOOP =

1

16π2
m2

s(−q
2)

[
αs(s0)

π

]4 5∑

i=1

HiL
i , (4.11)

where L = ln(−q2/µ2), and the above expansion is up to (unknown) terms not multiplying

logarithms, which do not contribute to δ(5). The remaining QCD contributions to δ(5)
(higher order in ms and vacuum condensates) have also been calculated, but their total

contribution is at the level of 1 − 2% of the sum of the gluonic terms in the wide range

s0 ≃ 2 − 6 GeV2.
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Turning to the hadronic sector, the spectral function in the pseudoscalar channel,

Imψ5(s)|HAD involves the kaon pole, plus two radial excitations, the K(1460) and K(1830)

both with widths of about 250 MeV. We follow the procedure outlined in [19], where the

resonance part of the spectral function is written as a linear combination of two Breit-

Wigner forms normalized at threshold according to chiral perturbation theory. The latter

incorporates the resonant sub-channel K∗(892) − π which is important due to the narrow

width of the K∗(892). This gives

δ5(s0)|HAD = 2f2
KM

2
K ∆5(M

2
K) +

1

π

∫ s0

0

ds

s
∆5(s) Im ψ5(s)|RES

≡ δ5(s0)|POLE + δ5(s0)|RES . (4.12)

For the scalar channel there is experimental data on Kπ phase shifts [20] that can be

used to reconstruct the spectral function

1

π
Im ψ (s) =

3

32π2

√
(s− s+) (s− s−)

s
|d(s)|2 , (4.13)

where s± = (MK ± Mπ)2, and d(s) is the scalar form factor. One can use the method

of [14], based on the Omnès representation, to relate d(s) to the experimental phase shifts.

A posteriori, the numerical importance of the resonance contribution to δ(5)(s0)|HAD is one

order of magnitude smaller than the gluonic contributions on account of the integration

kernel ∆(5)(s). Hence, a simpler parametrization in terms of two Breit-Wigner forms,

properly normalized at threshold with |d(s+)| ≃ 0.3 GeV2, is equally acceptable. We

thus include the K∗
0 (1430) and the K∗

0 (1950) with masses and widths M1 = 1.4 GeV,

Γ1 = 290 ± 21 MeV, and M2 = 1.94 GeV, Γ2 = 201 ± 86 MeV.

The function δ(s0) in this channel can then be written as

δ(s0)|HAD =
1

π

∫ s0

0

ds

s
∆(s) Im ψ(s)|RES ≡ δ(s0)|RES . (4.14)

Requiring ∆(5)(s) to vanish at resonance determines a0(5) and a1(5) with the result

a0 = 0.777 GeV−2 a1 = −0.136 GeV−4

a05 = 0.768 GeV−2 a15 = −0.140 GeV−4 .
(4.15)

The values of these coefficients are very similar on account of the similarity between the

scalar and pseudoscalar resonance masses.

5. Results

In order to compute the QCD contribution to the scalar and pseudoscalar two-point func-

tions at zero momentum we need as input the invariant strange-quark mass m̂s and the

QCD scale ΛQCD, which are strongly correlated. To obtain the running quark mass and

strong coupling constant it is only necessary to use the four-loop expressions, which for
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three quark flavours are

ms

(
Q2
)

=
m̂s
(

1
2L
) 4

9

{
1 + (290 − 256LL)

1

729

1

L
+

[
550435

1062882
−

80

729
ζ (3)

−
(
388736LL − 106496LL2

) 1

531441

]
1

L2

+

[
−

126940037

1162261467
−

256

177147
β4 +

128

19683
γ4 +

7520

531441
ζ (3)

+

(
−

611418176

387420489
+

112640

531441
ζ (3)

)
LL+

335011840

387420489
LL2

−
149946368

1162261467
LL3

]
1

L3
+O

(
1

L4

)}
, (5.1)

αs(s0)

π
=
α

(1)
s (s0)

π
+

(
α

(1)
s (s0)

π

)2(
−β2

β1
lnL

)

+

(
α

(1)
s (s0)

π

)3(
β2

2

β2
1

(ln2L− lnL− 1) +
β3

β1

)
+ O(1/L4) , (5.2)

where
α

(1)
s (s0)

π
≡

−2

β1L
, (5.3)

L = ln(s0/Λ
2
QCD), LL = lnL, β1 = −9/2, β2 = −8, β3 = −3863/192, and

β4 = −
281198

4608
−

890

32
ζ (3) , (5.4)

with γ4 = 88.5258 [21], and m̂j is the invariant quark-mass. The terms of order O
(

1
L4

)

above are known up to a constant not determined by the renormalization group. However,

we have checked that our final results are essentially insensitive to the inclusion of terms

of this order in αs and ms.

Since we are dealing with three quark flavours, it is simpler to determine ΛQCD from

the strong coupling obtained from τ -decay [12, 22]: αs(M
2
τ ) = 0.31 − 0.36, which gives

ΛQCD = 330 − 420 MeV. Recent determinations of the strange quark mass from various

QCD sum rules [5, 18, 23] give values in the range ms(2 GeV) ≃ 80 − 130 MeV, which

translates into m̂s ≃ 100 − 170 MeV after using the above values of ΛQCD. The two-point

functions at zero momentum are given by

ψ(0)|su = δ|RES(s0) + δ|QCD(s0) , (5.5)

ψ5(0)|
s
u = δ5|POLE(s0) + δ5|RES(s0) + δ5|QCD(s0) , (5.6)

where the various δ′s above are computed from eqs. (4.6)–(4.10), (4.12) and (4.14); as

mentioned earlier, the QCD contributions to δ(5)(s0) from higher orders in ms and from

the vacuum condensates add up (due to partial cancellations) to less than 1% of the sum

of the gluonic terms. In figure 1 we show the results for ψ5(s0) (curve (a)), and ψ(0) (curve

– 9 –
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Figure 2: The two-point functions at zero momentum, ψ5(0), curve (a), and ψ(0), curve (b), as a

function of s0, for m̂s = 100 MeV, and ΛQCD = 330 MeV.

b) as a function of s0 for the reference value of the invariant quark mass m̂s = 100 MeV

(ms(2 GeV) ≃ 80 MeV), and ΛQCD = 330 MeV. As seen from this figure the results

are fairly stable in the wide region s0 ≃ 2 − 6 GeV2; a similar stability is obtained for

ΛQCD = 420 MeV. For values in the range ΛQCD = 330 − 420 MeV we find

ψ5(0) = (0.39 ± 0.03) × 10−2 GeV4 (m̂s = 100 MeV) , (5.7)

ψ(0) = −(0.95 ± 0.25) × 10−3 GeV4 (m̂s = 100 MeV) , (5.8)

which using eqs. (3.3), (3.4) leads to

Rsu ≡
〈ss〉

〈uu〉
= 0.6 ± 0.1 (m̂s = 100 MeV) . (5.9)

The uncertainties above are entirely due to the uncertainty in ΛQCD, as m̂s has been

kept fixed at the indicated reference value. The ratio Rsu exhibits a stronger sensitivity to

the value of the strange quark mass, as this enters in the PQCD expression of ψ(5) as an

overall multiplicative factor m̂s
2.

Given the similarity between the integration kernels in the scalar and pseudoscalar

channels, ∆(s) ≃ ∆5(s), or δ|QCD(s0) ≃ δ5|QCD(s0), it is possible to obtain an approx-

imate expression for Rsu as a function of m̂s as follows. From eqs. (3.4) and (5.5), (5.6)
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one has

Rsu =
δ5|POLE + δ5|RES + δ5|QCD + δ|RES + δ|QCD

δ5|POLE + δ5|RES − δRES + δ5|QCD − δ|QCD

≃

[
δ5|POLE + δ5|RES + δ|RES

δ5|POLE + δ5|RES − δ|RES

]

+

[
δ5|QCD + δ|QCD

δ5|POLE + δ5|RES − δ|RES

]

≡ A +B(ΛQCD)
[m̂s(MeV)

100 MeV

]2
, (5.10)

where we approximated [δ5|QCD − δ|QCD] ≃ 0 in the denominator of the above ratio, A ≃

1.15 is basically constant in the wide range s0 = 2− 6 GeV2, andB(ΛQCD) = −0.44 (−0.68)

for ΛQCD = 330 (420) MeV, respectively. This formula is accurate to within 2 - 3 %, and

it allows for a quick estimate of Rsu for other values of the invariant strange quark mass.

It also gives an upper bound for this mass from the fact that Rsu ≥ 0, viz.

m̂s ≤

{
162 MeV (ΛQCD = 330 MeV)

130 MeV (ΛQCD = 420 MeV) .
(5.11)

These bounds translate into the following bounds for the running strange quark mass

at a scale of 2GeV

ms(2 GeV) ≤

{
121 MeV (ΛQCD = 330 MeV)

105 MeV (ΛQCD = 420 MeV) .
(5.12)

These results are in line with recent determinations from QCD sum rules [5, 18, 23], as

well as Lattice QCD [24]. However, in making comparisons, the strong correlation between

m̂s and ΛQCD should be kept in mind. In particular, older determinations giving higher

values of ms used mostly ΛQCD ≃ 100 − 250 MeV.

We now turn to the implications of these results for chiral perturbation theory, as

outlined in section 2. Inserting our result for Rsu, eq. (5.9), in eq. (3.9), and using eqs. (3.10)

and (3.11) gives the following prediction for the low energy constant Hr
2

Hr
2 = −(4.3 ± 1.3) × 10−3 , (5.13)

where the range fπ = 82 − 92 MeV was used, to take into account uncertainties from

higher orders in the chiral expansion [6].

Using this result together with eq. (3.11) in eq. (3.15), the next-to-leading order cor-

rections to the GMOR relation become

δπ = 0.04 ± 0.02

δK = 0.5 ± 0.2 ,
(5.14)

in good agreement with [6].

6. Conclusions

We have argued that it is legitimate to use QCD sum rules to determine the scalar and

pseudoscalar two-point functions at zero momentum. These sum rules actually fix the
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Figure 3: The ratio Rsu as a function of s0, for m̂s = 100 MeV, ΛQCD = 330 MeV, curve (a), and

ΛQCD = 420 MeV, curve (b).

difference between the true ψ(5)(0) and its perturbative piece. Approaches based on tra-

ditional QCD sum rules, e.g. Laplace transform sum rules, are affected by uncontrollable

systematic uncertainties in the reconstruction of hadronic resonance spectral functions.

To minimize these uncertainties we have introduced new Finite Energy QCD sum rules

(FESR) involving an integration kernel in the form of a second degree polynomial with

two free parameters. Requiring the hadronic spectral function to vanish at the position

of the first two resonances determines these constants, and reduces the importance of this

contribution to the FESR by one order of magnitude. This makes ψ(5)(0) dependent mostly

on the strange quark mass, and to a lesser extent on ΛQCD. The dependence on the radius

s0 of the integration contour in the complex energy plane is very mild, with the results for

ψ(5)(0) showing very good stability in the wide range s0 ≃ 2− 6 GeV2. Our results for the

scalar and pseudoscalar correlators at zero momentum, eqs. (5.7), (5.8), as well as for the

ratio Rsu, eq. (5.9), are in broad agreement with most previous determinations based on

traditional QCD sum rules (Laplace, FESR) [2], [5]–[6]. However, it should be kept in mind

that many of the old dterminations used much lower values of ΛQCD, and somewhat higher

values of m̂s. In addition, they used available PQCD results at the time, which were limited

to two-, three- or at most four-loop order, many were affected by logarithmic quark-mass

singularities, and by uncontrollable systematic hadronic uncertainties in all cases. Our

result for Rsu is somewhat smaller than one from a recent lattice determination [25]. The
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bound obtained for ms, eqs. (5.11), (5.12), is in good agreement with recent results from

QCD sum rules [23], as well as lattice QCD [24], which point to values smaller than in

the past. Future improvement in the accuracy of ΛQCD, and particularly in that of ms,

will allow for a more precise determination of the scalar and pseudoscalar correlators at

zero momentum, and hence of Rsu, almost free of systematic hadronic uncertainties. This

becomes possible due to the introduction of the integration kernel, eq. (4.2), in the FESR.

It should be mentioned that this kernel, while vanishing at the resonance peaks, it does not

vanish at the point s = s0 where the integration circle in the complex energy plane meets

the real axis. It is known that in some applications of FESR, e.g. in tau-decay, perturbative

QCD does not seem to hold close to the real axis; this has led to the proposal of weighted

FESR with weight functions vanishing at s = s0 [26]. In the application discussed here,

though, this problem does not seem to arise. In fact, the perturbative expansion appears

to converge very well, and the stability region is unusually broad, extending well above

standard values. The introduction of an additional integration kernel vanishing at s = s0
would not seem to provide any additional advantages. In any case, we have confirmed this

by an explicit calculation. The subtraction constants ψ(5)(0) remain essentially the same

if a weighted kernel is added.
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